Monitoring Performance
Set up comprehensive monitoring to track flow health, identify issues early, and optimize performance. Learn metrics, alerting, dashboards, and continuous improvement strategies.
📍 You Are Here
Your flows are running, but you need visibility into their performance. This guide shows you how to monitor effectively, set up alerts, and continuously optimize your lead operations.
🎯 What You'll Learn
- Key performance indicators
- Real-time monitoring setup
- Alert configuration
- Dashboard creation
- Performance optimization
- Trend analysis
📊 Key Performance Indicators
Volume Metrics
Track lead flow:
- Leads per hour/day/month
- Source distribution
- Peak vs off-peak patterns
- Growth trends
// Calculate hourly rate
hourly_rate = leads_last_hour.count
daily_projection = hourly_rate * 24
// Check if normal
if (hourly_rate < historical_average * 0.5) {
alert("Volume significantly below normal")
}
Quality Metrics
Monitor lead quality:
- Acceptance rate (% passing criteria)
- Validation pass rate (email, phone)
- Duplicate rate
- Enhancement success rate
// Quality score calculation
quality_score = (
(valid_emails / total) * 0.3 +
(valid_phones / total) * 0.3 +
(non_duplicates / total) * 0.2 +
(enhanced_data / total) * 0.2
) * 100
Performance Metrics
System performance:
- Average processing time
- Step duration breakdown
- API response times
- Queue depth
Business Metrics
Bottom line impact:
- Cost per lead
- Revenue per lead
- ROI by source
- Conversion rates (with feedback)
🚨 Setting Up Alerts
Critical Alerts
Immediate attention needed:
Flow Stopped:
Alert: Flow Processing Stopped
Condition: leads_last_15_min = 0 AND expected > 0
Action: Email + SMS to on-call
Priority: Critical
High Failure Rate:
Alert: High Rejection Rate
Condition: failure_rate > 50% for 10 minutes
Action: Email team, pause source
Priority: High
API Errors:
Alert: Integration Failing
Condition: API_errors > 10 in 5 minutes
Action: Email, create ticket
Priority: High
Warning Alerts
Attention needed soon:
Volume Changes:
Alert: Volume Drop
Condition: current_volume < average * 0.7
Duration: 30 minutes
Action: Email notification
Priority: Medium
Quality Degradation:
Alert: Quality Declining
Condition: quality_score < 80%
Duration: 1 hour
Action: Email report
Priority: Medium
Informational Alerts
Good to know:
Daily Summary:
Alert: Daily Performance Report
Schedule: Daily at 9 AM
Content: Volume, quality, cost metrics
Action: Email to team
Priority: Low
📈 Real-Time Dashboards
Executive Dashboard
High-level business view:
┌─────────────────────────────────────────┐
│ EXECUTIVE DASHBOARD │
├─────────────────┬───────────────────────┤
│ Today's Leads │ 12,456 ↑ 15% │
│ Acceptance Rate │ 89.3% ↓ 2.1% │
│ Total Cost │ $18,684 │
│ Projected Rev │ $124,560 │
│ ROI │ 567% ↑ 12% │
└─────────────────┴───────────────────────┘
Top Sources Quality Volume
1. Google Ads 95.2% 4,521
2. Facebook 91.8% 3,892
3. Partner Network 87.4% 2,156
Operations Dashboard
Detailed operational view:
┌─────────────────────────────────────────┐
│ OPERATIONS DASHBOARD │
├─────────────────────────────────────────┤
│ Processing Time: 324ms avg │
│ Queue Depth: 12 leads │
│ Active Flows: 8/10 │
│ │
│ Errors (Last Hour): │
│ - Email validation: 3 │
│ - CRM timeout: 1 │
│ - Phone service: 0 │
│ │
│ [Processing Graph - Real-time] │
└─────────────────────────────────────────┘
Source Performance Dashboard
Vendor management view:
Source: ABC Marketing
├─ Volume: 1,234 leads today
├─ Quality Score: 91.2%
├─ Duplicate Rate: 3.4%
├─ Cost per Lead: $12.50
├─ Rejection Reasons:
│ - Invalid phone: 45 (3.6%)
│ - Duplicate: 42 (3.4%)
│ - Bad email: 23 (1.9%)
└─ Trend: ↑ Improving
🔍 Deep Dive Analysis
Hourly Patterns
Identify optimal times:
// Analyze by hour
hourly_analysis = leads
.groupBy(lead => new Date(lead.created).getHours())
.map(hour => ({
hour: hour.key,
volume: hour.length,
quality: hour.filter(l => l.valid).length / hour.length,
conversion: hour.filter(l => l.converted).length / hour.length
}))
// Find best hours
best_hours = hourly_analysis
.sort((a, b) => b.conversion - a.conversion)
.slice(0, 3)
Source Comparison
Compare vendor performance:
source_metrics = sources.map(source => ({
name: source.name,
volume: getVolume(source),
quality: getQualityScore(source),
cost: getTotalCost(source),
revenue: getProjectedRevenue(source),
roi: (revenue - cost) / cost * 100
}))
// Rank by ROI
ranked_sources = source_metrics
.sort((a, b) => b.roi - a.roi)
Error Analysis
Understand failure patterns:
error_analysis = failed_leads
.groupBy(lead => lead.failure_reason)
.map(reason => ({
reason: reason.key,
count: reason.length,
percentage: reason.length / total_leads * 100,
sources: [...new Set(reason.map(l => l.source))],
trend: calculateTrend(reason.key, last_period)
}))
.sort((a, b) => b.count - a.count)
🎯 Performance Optimization
Identify Bottlenecks
Find slow steps:
// Average time per step
step_performance = events
.flatMap(e => e.steps)
.groupBy(s => s.name)
.map(step => ({
name: step.key,
avg_time: average(step.map(s => s.duration)),
max_time: Math.max(...step.map(s => s.duration)),
count: step.length
}))
.sort((a, b) => b.avg_time - a.avg_time)
// Steps taking > 1 second
slow_steps = step_performance
.filter(s => s.avg_time > 1000)
Optimize Slow Steps
Common optimizations:
Reorder Steps:
// Before: Slow enhancement first
1. Data Enhancement (2s)
2. Email Check (0.1s)
3. Delivery (0.5s)
Total: 2.6s
// After: Fast filter first
1. Email Check (0.1s)
2. Data Enhancement (2s) - only if email valid
3. Delivery (0.5s)
Total: 0.6s for invalid, 2.6s for valid
Add Caching:
// Cache enhancement results
if (cache.has(phone)) {
result = cache.get(phone)
} else {
result = await enhance(phone)
cache.set(phone, result, ttl: 3600)
}
📊 Trend Analysis
Daily Trends
Track patterns over time:
// 30-day rolling average
daily_trends = past_30_days.map(day => ({
date: day,
volume: getVolume(day),
quality: getQuality(day),
moving_avg: getMovingAverage(day, 7)
}))
// Detect anomalies
anomalies = daily_trends.filter(day =>
Math.abs(day.volume - day.moving_avg) > day.moving_avg * 0.3
)
Seasonal Patterns
Understand cycles:
// Day of week analysis
dow_pattern = leads
.groupBy(l => new Date(l.created).getDay())
.map(day => ({
day: ['Sun','Mon','Tue','Wed','Thu','Fri','Sat'][day.key],
avg_volume: average(day.volumes),
avg_quality: average(day.qualities)
}))
// Monthly patterns
monthly_pattern = leads
.groupBy(l => new Date(l.created).getMonth())
.map(month => ({
month: month.key,
characteristics: analyzeMonth(month)
}))
🔧 Monitoring Tools
Built-in Tools
LeadConduit provides:
- Real-time flow statistics
- Event browser
- Basic reports
- Email alerts
External Integration
Connect to monitoring platforms:
Datadog:
// Send metrics
datadog.gauge('leadconduit.acceptance_rate', acceptance_rate, tags)
datadog.increment('leadconduit.leads_processed', 1, tags)
New Relic:
// Track transactions
newrelic.startSegment('lead_processing', true, () => {
// Process lead
newrelic.addCustomAttribute('source', lead.source)
newrelic.addCustomAttribute('outcome', outcome)
})
Custom Webhooks:
// Send to monitoring endpoint
webhook.send({
metric: 'lead_processed',
dimensions: {
flow: flow_id,
source: source_name,
outcome: result
},
value: 1,
timestamp: Date.now()
})
💡 Best Practices
Monitor Proactively
Don't Wait for Problems:
- Set up alerts before issues
- Review dashboards daily
- Track trends weekly
- Deep dive monthly
Focus on Business Impact
Prioritize Metrics:
- Revenue-impacting metrics
- Cost-related metrics
- Quality indicators
- Technical performance
Automate Response
When Possible:
// Auto-pause bad sources
if (source.quality_score < 70) {
source.pause()
notify_team("Source auto-paused: " + source.name)
}
// Auto-scale volume caps
if (conversion_rate > target) {
increase_volume_cap(source, 20)
}
Document and Share
Keep Team Informed:
- Document what metrics mean
- Share dashboard access
- Train on alert response
- Regular performance reviews
🎯 Monitoring Checklist
Initial Setup:
- Define KPIs
- Set up dashboards
- Configure critical alerts
- Test alert delivery
Daily Monitoring:
- Check dashboard
- Review any alerts
- Note anomalies
- Quick fixes applied
Weekly Review:
- Analyze trends
- Compare sources
- Review costs
- Plan optimizations
Monthly Deep Dive:
- Full performance analysis
- ROI calculations
- Process improvements
- Strategy adjustments
📈 Continuous Improvement
Regular Optimization Cycle
- Measure: Collect performance data
- Analyze: Identify improvement areas
- Optimize: Implement changes
- Verify: Confirm improvements
- Repeat: Continue cycle
A/B Testing
Test improvements:
// Test new validation
if (Math.random() < 0.1) { // 10% test
use_new_validation = true
} else {
use_old_validation = true
}
// Track results
track_metric('validation_success', {
version: use_new_validation ? 'new' : 'old',
result: validation_result
})
📚 Related Documentation
- Custom Reports - Build specific reports
- Understanding Events - Event analysis
- Flow Optimization - Performance tips
📊 Monitor to Master: Effective monitoring transforms reactive firefighting into proactive optimization. Set up comprehensive monitoring and watch your performance improve continuously!
Comments
0 comments
Please sign in to leave a comment.